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C. Rauszer’s Bi-Intuitionism

Heyting algebra a bounded lattice A = (A,∨,∧,0,1) with Heyting
implication (→), defined as the right adjoint to meet.

c ∧b ≤ a
c ≤ b→ a

co-Heyting algebra is a lattice C such that C op is a Heyting
algebra: C = (C ,∨,∧,1,0) with subtraction (à)
defined as the left adjoint of join.

a≤ b∨c
aàb ≤ c

Bi-Heyting algebra: a lattice with the structure of Heyting and of
co-Heyting algebra.



C. Rauszer’s Bi-Intuitionism

Bi-intuitionistic language
A,B := a | > | ⊥ | A∧B | A→B | A∨B | AàB
Read AàB as “A excludes B”.
Two negations:

• strong intuitionistic negation ∼A=df A→⊥
• weak co-intuitionistic negation aA=df >àA

to be distinguished from classical negation ¬A
F. W. Lawvere. Intrinsic co-Heyting boundaries and the Leibniz rule in
certain toposes, Category Theory (Como 1990), LNM 1488, 1991
[Reyes and Zolfaghari 1996] [Stell and Worboys 1997][Pagliani 1998]

Kripke models [Rauszer 1977]
(W ,≤,), with (W ,≤) a preorder:

• w A→B iff ∀w ′ ≥w .w ′A implies w ′B;
• w AàB iff ∃w ′ ≤w .w ′A and not w ′B.



C. Rauszer’s Bi-Intuitionism

How to formalize Bi-intuitionism in a Gentzen system?

Γ,A⇒B→-R (*)
Γ⇒A→B,∆

Γ1 ⇒∆1,C D,Γ2 ⇒∆2à-R
Γ1,Γ2 ⇒∆1,C àD,∆2

Γ1 ⇒∆1A B,Γ2 ⇒∆2→-L
Γ1,A→B,Γ2 ⇒∆1,∆2

C `D,∆à-L (**)
Γ,C àD⇒∆

• The formalization is not trivial (see [Crolard 2001]).
• Cut elimination is problematic.



No categorical model for Rauszer’s logic

Let C be a CCC and let ⊥ be initial in C .
Theorem (Joyal’s Theorem)
For any object A in C , if C (A,⊥) is nonempty, then A is initial.

Proof.
⊥×A is initial, as C ((⊥×A) ,B)≈C

(⊥,BA)
. Given f : A→⊥,

show that A≈⊥×A, using the fact that 〈f , idA〉◦π′
⊥,A = id⊥,A,

since ⊥×A is initial.



No categorical model for Rauszer’s logic

Definition (Coproduct)
The coproduct of A and B is an object A⊕B together with arrows
ιA,B and ι′A,B such that for every C and every pair of arrows
f : A→C and g : B→C there is a unique [f ,g ] : A⊕B→C making
the following diagram commute:

C

A A⊕B B

f

ιA.B

[f ,g ]

ι′A.B

g



No categorical model for Rauszer’s logic

Definition (Coexponent)
The coexponent of A and B is an object BA together with an arrow
�A,B : B→BA⊕A such that for any arrow f : B→C ⊕B there exists
a unique f∗ : BA →C making the following diagram commute:

B C ⊕A C

BA⊕A BA

f

�A,B
f∗⊕ idA f∗



No categorical model for Rauszer’s logic

Theorem (Crolard’s Theorem)
If both C and C op are CCCs, then C is a preorder.

Proof.
Let A⊕B be the coproduct and AB the coexponent of A and B.
Then C (A,B)≈C (A,⊥⊕B)≈C (AB ,⊥). By Joyal’s Theorem
C (AB ,⊥) contains at most one arrow.



No categorical model for Rauszer’s logic

Theorem (Crolard’s Lemma)
The coexponent BA of two sets A and B is defined if and only if
A=; or B =;.
Proof.
In Set the coproduct is the disjoint union and the initial object is
;.
(if) For any B, let B⊥ =df B with �⊥,B=df ιB,⊥. For any A, let
⊥A =df ⊥ with �A,⊥=df ä : ⊥→⊥⊕A.
(only if) If A 6= ; 6=B then the functions f and �A,B for every b ∈B
must choose a side, left or right, of the coproduct in their target
and moreover f∗⊕ idA leaves the side unchanged. Hence, if we take
a nonempty set C and f with the property that for some b
different sides are chosen by f and �A,B , then the diagram does not
commute.



No “perfect duality” between Intuitionism and
co-Intuitionism

No modelling of co-Int. in Set because
• false (⊥) = the initial object and
• disjunction = coproduct.

“Perfect duality” in the linear case:
Multiplicative linear Int.: A = (A,1,⊗,() (with natural

isomorphisms), symmetric monoidal closed (with(
the right adjoint of ⊗).

Multiplicative linear co-Int.: C = (C ,⊥,℘,à) (with natural
isomorphisms), symmetric monoidal left-closed (with
à the left adjoint of ℘).



Dialogue chirality
A dialogue chirality on the left is a pair of monoidal categories (A ,∧, true) and
(B,∨, false) equipped with an adjunction

A B

L

⊥

R

whose unit and counit are denoted as

η : id →R ◦L, ε : L◦R → id

together with a monoidal functor1

(−)∗ : A →Bop(0,1)

and a family of bijections

χm,a,b : 〈m∧a|b〉→ 〈a|m∗∨b〉
natural in m, a, b (curryfication). Here the bracket 〈a|b〉 denotes the set of
morphisms from a to R(b) in the category A :

〈a|b〉 =A (a,R(b))
1In the context of 2-categories, the notation Bop(0,1) means that the op operation

applies to 0-cells and 1-cells.



Dialogue chirality

The family χ is moreover required to make the diagram

〈(m∧n)∧a|b〉 〈a|(m∧n)∗∨b〉

〈m∧ (n∧a)|b〉 〈n∧a|m∗∨b〉 〈a|n∗∨ (m∗∨b)〉

χm∧n

=assoc.

χm χn

assoc. monoid. of (−)∗

commute for all objects a, m, n, all morphisms f : m→ n of the
category A and all objects b of the category B.



Dialogue chirality and Bi-intuitionism

Think of:
• A as a model of Int conjunctive logic on the language ∩,>

(A may be Cartesian).
• B as a model of co-Int disjunctive logic on the language
g,⊥.

• The contravariant monoidal functor ()∗ : A →Bop models De
Morgan duality.

• There is a dual contravariant functor ∗ () : B →A op.
• What are the covariant functors LaR?
• Main Idea: introduce negations “∼” in A and “a” in B;
• let L=a ∗ () and R =∼ ()∗.



Polarized Bi-Intuitionism BIp

Language of polarized bi-intuitionism BIp: sets of atoms {a1, . . . }
and {c1, . . . };

A,B := a | > | u |A∩B | ∼A |A⊃B | ∼C
C ,D := c | ⊥ | j | C gD | aC | C àD | aA

Read C àD as “C excludes D”.
Think of ∼A=df A⊃ u, aC =df jàC ; but in the chirality model
∼A and aC are primitive.



Polarized Bi-Intuitionism BIp

Informal interpretation

• “Justification logic” of assertions and hypotheses;
• conclusive evidence for assertions;
• “scintilla of evidence” for hypotheses.
• Atoms: ai =` pi , ci =H pi (where pi is a proposition).

• ai is the type of evidence for assertions of pi ;
• cj is the type of evidence for hypotheses on pj ;
• A⊃B = the type of methods transforming evidence for A into

evidence for B;
• C àD = the type of hypothetical evidence that C is justified

and D is refuted;
• u = an always unjustified assertion;
• j = an always justified hypothesis;
• ∼X = denial of X ; aX = doubt about X , X =A,C .



Some problems

1 What is a scintilla of evidence and what is a doubt about an
assertion or a hypothesis?

2 What does “C excludes D” mean?
Scintilla of evidence is legal terminology
[Gordon and Walton 2009]. It evokes probabilistic methods,
perhaps infinitely-valued logics (not discussed here).
An alternative: define evidence for and evidence against
assertion and hypotheses. Obtain a “Dialectica-like” dialogue
semantics [Bellin 2014].
A “non-logical axiom” (beyond the duality!): If asserting p is
justified, then it is justified making the hypothesis that p



McKinsey-Tarski-Gödel’s Translation

Modal S4 Translation

(` p)M =äp (H p)M =♦p
(A⊃B)M =ä(AM →BM) (C àD)M =♦(CM ∧¬DM)

(>)M = t (⊥)M = f

(A∩B)M =AM ∧BM (CgD)M =CM ∨DM

(∼X)M =äXM for X =A,C (aX)M =♦¬XM

Lemma
AM ≡äAM , CM ≡♦C.

Remarks
• (∼A)M =ä¬äAM =ä♦¬AM , (∼C)M =ä¬♦CM =ä¬CM . It

distinguishes between negation and duality.
• (C àD)M =♦(CM ∧ä¬DM).



Proof-theoretic Meaning of Subtraction

Multiple-conclusion single-premise Natural Deduction

H ` Γ,C D ` ∆à-intro H ` Γ,C àD,∆

Computational meaning:
if t : C and x : D, then make−coroutine(t ,x): C àD.

H ` ∆,C àD C ` D,gà-elim H ` ∆,g

Computational meaning:
if u : C àD, y : C and t(y): D, then the term postpone(y 7→ f ,u)
is stored away.



Proof-theoretic Meaning of Subtraction

Normalization step for subtraction:

d1
H ` Γ,C

d3
D ` ∆à-I H ` Γ,∆,C àD

d2
C ` D,gà-E H ` Γ,∆,g

reduces to

d1
H ` Γ,C

d2
C ` D,gsubst H ` Γ,D,g

d3
D ` ∆subst H ` Γ,∆,g

See [Bellin and Menti 2014].



Sequent calculus for BIp
Two-zone sequents.

Γ;⇒A;∆ or Γ;C ⇒;∆

int: Γ;⇒A; co-int: ;C ⇒;∆

Write Γ;ε⇒ ε′;∆, with exactly one of ε,ε′ non-null.
Identity Rules

Logical axiom:
A;⇒A;

Logical axiom:
;C ⇒;C

cut 1:

Θ;⇒A;g A,Θ′;ε⇒ ε′;g′

Θ,Θ′;ε⇒ ε′;g,g′

cut 2:

Θ;ε⇒ ε′;g,C Θ′;C ⇒g′

Θ,Θ′;ε⇒ ε′;g,g′



Sequent calculus for BIp

Duality Rules

∼ right:

Θ;C ⇒;g
Θ;⇒∼C ;g

∼ left:

Θ;ε⇒ ε′;g,C
∼C ,Θ;ε⇒ ε′;g

a right:

Θ,A;ε⇒ ε′;g
Θ;ε⇒ ε′;g,aA

a left:

Θ;⇒A;g
Θ;aA⇒;g

u/j left:
u; j⇒;

u/j right:
;⇒ u; j



Sequent calculus for BIp

Asymmetric Non-Logical Axioms

` /H left:
ai ; j⇒;ci

` /H right:
ai ;⇒ u;ci

where ai =` pi , ci =H pi .



Sequent calculus for BIp

Structural rules

Contraction left:

A,A,Θ;ε⇒ ε′;g
A,Θ;ε⇒ ε′;g

Contraction right:

Θ;ε⇒ ε′;g,C ,C
Θ;ε⇒ ε′;g,C

Weakening left:

Θ;ε⇒ ε′;g
A,Θ;ε⇒ ε′;g

Weakening right:

Θ;ε⇒ ε′;g
Θ;ε⇒ ε′;g,C



Sequent calculus for BIp

Conjunction and disjunction
Assertive validity axiom:

Θ;⇒>;g

∩ right:

Θ;⇒A1;g Θ;⇒A2;g
Θ;⇒A1 ∩A2;g

∩i left: (i = 0,1)

Ai ,Θ;ε⇒ ε′;g
A0 ∩A1,Θ;ε⇒ ε′;g

Hypotetical absurdity axiom:

Θ;⊥⇒;g

g right:

Θ;ε⇒ ε′;g,C0,C1
Θ;ε⇒ ε′;g,C0gC1

g left:

Θ1;C1 ⇒;g1 Θ2;C2 ⇒;g2
Θ1,Θ2;C1gC2 ⇒;g1,g2



Sequent calculus for BIp

Implication and subtraction

⊃ right:

Θ,A1;⇒A2;g
Θ;⇒A1 ⊃A2;g

⊃ left:

Θ1;⇒A1;g1 A2,Θ2;ε⇒ ε′;g2
A1 ⊃A2,Θ1,Θ2;ε⇒ ε′;g1,g2

à right:

Θ1;ε⇒ ε′;g1,C1 Θ2;C2 ⇒;g2
Θ1,Θ2;ε⇒ ε′;g1,g2,C1àC2

à left:

Θ;C1 ⇒;g,C2
Θ;C1àC2 ⇒;g



Categorical model for BIp

We show that categorical models of BIp have the form of dialogue
chirality.
We sketch the construction of the syntactic category:

• objects are formulas;
• morphisms are equivalence classes of sequent derivations;
• subject to naturality conditions [omitted].



Categorical model for BIp
• Let A = (Int,∩,>) be the Cartesian category of intuitionistic

formulas and derivations in BIp.
• Let B = (co− Int,g,⊥) be the monoidal category of

co-intuitionistic formulas and derivations in BIp.
• We have contravariant operations

∼ : A →A (written ∼u) and a : B →B (written j a)
Let ·♦(A)= j aaA and �(C)=∼u∼C .

• Define a functor L= ·♦ : A →B sending a derivation
d : A1;⇒A2; to the derivation ·♦d : ; ·♦A1 ⇒; ·♦A2 defined in the
obvious way.
Similarly define a functor R =� : B →A .

• LaR: the unit and counit of the adjunction are given by the
derivation of Proposition (ii).

• The duality a is a contravariant monoidal functor A →Bop,
sending d : A1∩A2;⇒A3∩A4; to
a d : ;aA3gaA4 ⇒;aA1gA2;.



Categorical model for BIp

• Let 〈A|C〉 be the set of (equivalence classes of) sequent
derivations of A;⇒�C ;.

• A ′ = (Int,∩,⊃,>) is in fact cartesian closed, so there is a
natural bijection between A ′(M∩A,�C) and A ′(A,M ⊃�C).

• The provable equivalences of Proposition (iii) provide a
natural bijection between A ′(A,M ⊃�C) and
A ′(A,�(aMgC)) (“De Morgan definition” of ⊃).

• By composing, we obtain the family of natural bijections

χM,A,C : 〈M∩A|C〉→ 〈A|aMgC〉.



Categorical model for BIp

Proposition
The following are provable in BIp.
(i) ∼aA ⇐⇒A and dually, C ⇐⇒ a∼C.
(ii) A ; ⇒ � ·♦A; and ; ·♦ �C ⇒ ; C.
(iii) M ⊃ �C ⇐⇒ �

(
(aM)gC

)
.

Proof for (ii) and (iii):

; ⇒ u ; j
A ; ⇒ A ;

a L A ; aA⇒ ;à R A ; ⇒ u ; jaaA
∼ L A,∼jaaA ; ⇒ u ;
⊃ R A ; ⇒ ∼u∼ jaaA︸ ︷︷ ︸

�·♦·A

;

; C ⇒ ; C ∼ R⇒∼C ; C u ; j ⇒ ; ⊃ L∼u∼C ; j ⇒ ; C
a R

; j ⇒ ; a∼∼C ,C à L
jaa∼u∼C︸ ︷︷ ︸

♦·�·C

; ⇒ ; C



Categorical model for BIp
Proof for (ii) and (iii) (continues from the previous page):

M; ⇒M ;

; C ⇒ ;C∼ R
; ⇒ ∼C ; C u ; ⇒ u ;⊃ L

�C ; ⇒ u ; C⊃ L M,M ⊃�C ; ⇒ u ; C
a R M ⊃�C ; ⇒ u ; aM,C
g R M ⊃�C ; ⇒ u ; (aM)gC

∼ L M ⊃�C ,∼ ((aM)gC) ; ⇒ u ;
⊃ R M ⊃�C ; ⇒ �((aM)gC) ;

M;⇒M;
a L

M ; aM ⇒ ; ; C ⇒ ;C
g L M ; (aM)gC ⇒ ; C

∼ R M ; ⇒∼ (aMgC) ; C u ; ⇒ u;
⊃ L ∼u∼ ((aM)gC),M ; ⇒ u ; C

∼ L
�((aM)gC),M,∼C ; ⇒ u;

⊃ R
�((aM)gC),M ; ⇒�C ;

⊃ R
�((aM)gC) ; ⇒M ⊃�C ;
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